Применение физических законов при измерении давления




Корзина:

Ваша корзина пуста





Главная » Без категории

Применение физических законов при измерении давления

Краткое содержание работы
Метрология и стандартизация

Задание / Часть работы

ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное
учреждение высшего образования
«Сибирский государственный аэрокосмический университет
имени академика М. Ф. Решетнева»
(СибГАУ)
Институт непрерывного образования

КУРСОВАЯ РАБОТА

Применение физических законов при измерении давления

Выполнил

Проверил

г. Красноярск
2017 г.

ОГЛАВЛЕНИЕ

Введение 3
1. Понятие о давлении, его виды, единицы измерения. 5
2. Физические законы, лежащие в основе измерения давления 14
3. Классификация средств измерения давления 19
Заключение 22
Библиографический список 23

ВВЕДЕНИЕ

Данная работа направлена на исследование физических законов и явлений, применяемых в измерениях давления, измерительной технике и метрологии.
Измерение давления необходимо практически в любой области науки и техники как при изучении происходящих в природе физических процессов, так и для нормального функционирования технических устройств и технологических процессов, созданных человеком. Давление определяет состояние веществ в природе (твердое тело, жидкость, газ).
Чрезвычайно многообразно применение давления в науке, технике и производстве. Энергетические возможности тепло- и гидроэлектростанций, и атомных электростанций определяются давлением пара или воды на лопасти турбин, под действием давления по каналам и трубопроводам на тысячи километров транспортируется вода, нефть и газ. Давление приводит в движение автомобили и самолеты, геодезические ракеты и космические корабли, открывает и закрывает двери лифта, вагонов метропоездов, троллейбусов и автобусов, подает воду и газ в квартиры наших домов.
Посредством давления осуществляется работа разнообразных станков, механизмов и установок в различных отраслях производства.
По давлению контролируют состояние рабочих сред в различных технологических процессах нефтехимической промышленности, при производстве искусственных волокон и пр. Во многих отраслях науки при проведении физических, термодинамических и метрологических исследований (определение концентрации газов в твердых веществах, констант уравнений состояния различных веществ, эталонные температурные и линейные измерения) также требуется измерять давление.
Поэтому актуально узнать, как, используя физические законы, осуществлять измерения и использовать физические величины, выраженные в соответствующих единицах.
Физические законы как правило выражаются в виде короткого словесного утверждения и/или компактной математической формулы. Как правило используется физическая величина как одно из свойств физического объекта.
Существует множество физических явлений, видов преобразования свойств вещества и энергии, которые можно использовать в технических системах.
Поскольку наука, экономика, промышленность не могут существовать без измерений, производится множество измерительных операций, результаты которых используются для обеспечения качества и технического уровня выпускаемой продукции, безопасности, безаварийной работы оборудования. Так, например, от точных измерений давления пара в трубопроводе на электростанции зависит безаварийная работа энергетических котлов, что очевидно не повлечет за собой нарушения снабжения города электричеством.
Поэтому требования к точности, надежности, эффективности функционирования технических систем различного назначения постоянно повышаются. Обеспечить указанные показатели невозможно без измерения большого количества параметров и характеристик разнообразных устройств, систем и процессов, поскольку по результатам измерений принимаются весьма ответственные решения.
Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и т. д. В системе СИ за единицу давления принят паскаль (Па).
В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический. При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь.
1. Понятие о давлении, его виды, единицы измерения.

Давление (P) — физическая величина, характеризующая состояние сплошной среды и численно равная силе, действующей на единицу площади поверхности перпендикулярно этой поверхности. В простейшем случае анизотропной равновесной неподвижной среды (гидростатическое давление) или идеальной (не имеющей внутреннего трения и анизотропной) движущейся среды давление не зависит от ориентации поверхности. В данной точке давление определяется как отношение нормальной составляющей силы Fn, действующей на малый элемент поверхности, к его площади. Давление является интенсивной физической величиной. Давление в системе СИ измеряется в паскалях; применяются также следующие единицы: Паскаль, Бар, Торр, Техническая атмосфера, Физическая атмосфера, Миллиметр ртутного столба, Миллиметр водяного столба, Дюйм ртутного столба, Фунт-сила на квадратный дюйм.
В зависимости от назначения, приборы для измерения давления делятся на следующие основные группы:
— Манометры, для измерения избыточного давления.
— Вакуумметры, для измерения вакуумметрического давления (вакуума).
— Мановакуумметры, для измерения вакуумметрического и избыточного давлений.
— Барометры, для измерения атмосферного давления.
— Баровакуумметры, для измерения абсолютного давления.
— Дифференциальные манометры, для измерения разности давлений.
Жидкостные — приборы, в которых измеряемое давление уравновешивается весом столба жидкости, а изменение уровня жидкости в сообщающихся сосудах служит мерой давления, называются жидкостными. К этой группе относятся чашечные и U-образные манометры, диффманометры и др.
С трубчатой пружиной предназначен для измерения давления газообразных и жидких, но не сильно вязких и не кристаллизующихся сред, не агрессивных к деталям из медных сплавов.
Пружинные — приборы, в которых измеряемое давление уравновешивается силами упругости пружины, деформация которой служит мерой давления. Благодаря простоте конструкции и удобству пользования пружинные приборы получили широкое применение в технике. К этой группе относятся разнообразные приборы, отличающиеся по виду пружин:
По метрологическому назначению измерительные приборы делятся на образцовые и рабочие.
Образцовыми измерительными приборами называются приборы, предназначенные для поверки других измерительных приборов. Образцовые манометры имеют следующие классы точности:
0,05; 0,2 — грузопоршневые манометры;
0,16; 0,25; 0,4 — пружинные манометры.
Рабочими измерительными приборами называются все измерительные приборы, служащие для непосредственных измерений. Рабочие манометры имеют классы точности 0,4; 06; 1; 1,5; 2,5; 4.
Манометры с трубчатой пружиной:
Трубчатые пружины представляют собой кругообразно согнутые трубки с овальным поперечным сечением. Давление измеряемой среды воздействует на внутреннюю сторону этой трубки, в результате чего овальное поперечное сечение принимает почти круглую форму. В результате искривления пружинной трубки возникают напряжения в кольцах трубки, которые разгибают пружину. Незажатый конец пружины выполняет движение, пропорциональное величине давления. Движение передается посредством стрелочного механизма на шкалу. Для измерений давления до 60 или 100 кгс/см2 применяются, как правило, согнутые с углом витка около 270°, кругообразные пружины. Для измерений давления с более высокими значениями используются пружины с несколькими лежащими друг над другом витками и одинаковым витковым диаметром (винтовая пружина) или со спиралеобразными витками, лежащими в одной плоскости (плоская спиральная пружина).
Манометры с пластинчатой пружиной:
Пластинчатые пружины представляют собой тонкие гофрированные мембраны кругообразной формы, которые зажимаются или привариваются по краю между двумя фланцами и вступают в соприкосновение с измеряемой средой только с одной стороны. Вызванный в результате такого соприкосновения прогиб пропорционален величине давления. Движение передается посредством стрелочного механизма на шкалу. Пластинчатые пружины обладают сравнительно высоким перестановочным усилием. В результате кольцеобразного крепления пластинчатые пружины менее восприимчивы к вибрациям по сравнению с трубчатыми пружинами, однако погрешность показаний при изменениях температуры у них больше. Благодаря опорам для мембран достигается повышенная стойкость к перегрузкам. Покрытия или фольга, наносимые на поверхность пластинчатых пружин обеспечивают защиту от коррозийных измеряемых сред. Широкие соединительные отверстия или открытые соединительные фланцы, а также возможности по промывке делают пластинчатые пружины, особенно пригодными при работе с высоковязкими, загрязненными или кристаллизующимися веществами.
Манометры с коробчатой пружиной:
Давление измеряемой среды воздействуют на внутреннюю сторону коробки, состоящей из двух кругообразных, гофрированных, герметично прилегающих друг к другу мембран. Возникающее под давлением поступательное движение пропорционально величине давления. Движение передается на шкалу с помощью стрелочного механизма. Манометры с коробчатой пружиной особенно пригодны для измерений давления газообразных сред. Защита от перегрузки возможна только в определенных границах. Для повышения чувствительности в манометре может устанавливаться ряд коробчатых пружин («пакет» коробчатых пружин).
Сильфон (см. рис. 2, г) представляет собой тонкостенную трубку с кольцевыми гофрами на боковой поверхности. Его упругость определяется материалом и толщиной стенки, числом гофр и их кривизной. Первичные приборы с сильфоном выпускаются показывающими (индекс «П») и самопишущими (индекс «С»). Поскольку сильфоны более чувствительны к изменению давления, чем трубчатые пружины, приборы с ними применяют для измерения сравнительно небольших разрежений и давлений. Самыми разнообразными по конструкции чувствительных элементов являются приборы с мембранными элементами. Плоская мембрана представляет собой гибкую пластину, закрепленную по окружности. При подаче давления в одну из камер, разделенных мембраной, центр ее окружности перемещается на величину Х. Статическая характеристика плоской мембраны имеет нелинейный вид, поэтому такие мембраны в приборах давления не используют. Для линеаризации статической характеристики применяют гофрированные мембраны и мембранные коробки. Чаще всего используют мембранные коробки, жесткость которых меньше чем жесткость отдельной мембраны. Это приводит к росту крутизны статической характеристики и увеличению зоны перемещений, пропорциональных приложенному давлению.
Мембранные чувствительные элементы имеют статическую характеристику зависимости (Х от Р) более крутую, чем сильфоны, что позволяет широко использовать их для измерения малых напоров и разрежений.
Манометр – прибор для измерения давление посредством деформации чувствительного элемента (пружина, мембрана и т.д.), который в свою очередь изменяет сопротивление тензодатчика. Отличие сигнализирующего манометра от других видов в том, что у первого имеется дополнительный электрический контакт, который в случае превышения допустимого давления замыкает электрическую цепь, которая включает сигнальные устройства (электрический звонок, сигнальная лампа и т.д.).
1. Область применения и конструкция напоромеров и тягомеров.
Напоромеры - манометры малых избыточных давлений до 40 КПа. Тягомеры -вакуумметры с пределом до минус 40 КПа. Напоромер, также как его модификации тягомер и тягонапоромер, используются для измерения малых величин вакуумметрического или избыточного давления природного газа, незапыленного сухого воздуха, и других различных газов, которые являются неагрессивными по отношению к контактируемым материалам: стали, цветным металлам и их сплавам. А также применяются для коммутации внешних электрических цепей в системах общепромышленной автоматики, например котельной, когда достигается пороговое, или по-другому придельное, значение давления, которое измеряется. Основная область применения напоромера состоит из котельного оборудования различных отраслей народного хозяйства.
Тип работы: курсовая

Рейтинг: 5.0/1
700 руб.
  • Артикул:
  • Файл доступен для скачивания сразу после оплаты!

    Размер:
    97.8Kb
  • Год: 2017
  • Страниц: 23



Покупка готовой работы - пошаговая инструкция








Почему нам доверяют?



Все покупки на Рефератыч.рф абсолютно безопасны, автор получит деньги только в том случае если работа, была Вам полезна.



Мы гарантируем Вам низкие цены,
поэтому если Вы вдруг нашли где то работу дешевле, напишите нам и мы сделаем цену для Вас еще ниже. Гарантированно!



Самое важное для нас - Ваш успех на защите! Поэтому, если вдруг возникают какие-либо претензии к работе сразу пишите нам!




Мы работаем

c 9:00 до 19:00
суббота с 10.00 до 16.00,
воскресенье — выходной


Вопрос-ответ

Какие гарантии Вы даете?
Если у преподавателя будут какие то замечания, Вы их исправите?
Как можно оплатить работу?






Рефератыч.рф - это специализированный портал где Вы сможете найти ответы на тесты, заказать курсовую,
реферат или диплом. Почитать статьи и новости нашего портала. Надеемся что будем Вам полезны,
а наша помощь сэконмит Вам кучу времени, для действительно нужных дел! Рады будем Вам помочь!
© Рефератыч.рф



Оплатить легко:


Главная  /  О компании  /  Услуги и цены  /  Гарантии  /  Контакты  /  Экспресс-заказ  /  Оценка стоимости  /  FAQ  /  Способы оплаты  /  Политика конфиденциальности