Оглавление
Определение бесконечно малых функций...2
Свойства бесконечно малых функций...2
Сравнение бесконечно малых величин....4
Эквивалентные бесконечно малые и основные теоремы о них...5
Применение эквивалентных бесконечно малых функций...7
Вычисление пределов..7
Приближенные вычисления...9
Список литературы..10
Определение бесконечно малых функций
Функция y=f(x) называется бесконечно малой при x→a или при x→∞, если
или ,
т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю
Дадим равносильное определение бесконечно ...........
Свойства бесконечно малых функций
Опираясь на правила вычисления пределов, можно сформулировать свойства бесконечно малых: алгебраическая сумма и произведение конечного числа бесконечно малых функций при x → x0, а также.............
и т.д......
Список литературы
1. Балдин, К.В. Математический анализ: Учебник / К.В. Балдин, В.Н. Башлыков, А.В. Рукосуев. - М.: Флинта, МПСУ, 2013. - 368 c
2. Боярчук, А.К. Справочное пособие по высшей математике. Т. 3. Часть 2: Математический анализ: кратные и криволинейные интегралы / А.К. Боярчук, И.И. Ляшко, Я.Г. Гай. - М.: ЛИБРОКОМ, 2012. - 256 c.
3. Будаев, В.Д. Математический анализ. Функции одной переменной: Учебник / В.Д. Будаев, М.Я. Якубсон. - СПб.: Лань, 2012. - 544 c.
4. Гаврилов, В.И. Математический анализ: Учебное пособие для студентов учреждений высшего профессионального образования / В.И. Гаврилов, Ю.Н. Макаров, В.Г. Чирский. - М.: ИЦ Академия, 2013. - 336 c.
5. Горлач, Б.А. Математический анализ: Учебное пособие / Б.А. Горлач. - СПб.: Лань, 2013. - 308 c.
6. Лейнартас, Е.К. Математический анализ: Учебное пособие для бакалавров / А.М. Кытманов, Е.К. Лейнартас, В.Н. Лукин; Под ред. А.М. Кытманов. - М.: Юрайт, 2012. - 607 c.
7. Лоссиевская, Т.В. Математический анализ: несобственные интегралы: Учебное пособие / Т.В. Лоссиевская. - М.: МИСиС, 2012. - 61 c.
8. Ляшко, И.И. Справочное пособие по высшей математике. Т. 2. Математический анализ: ряды, функции векторного аргумента: Часть 2: Дифференциальное исчисление векторного аргумента / И.И. Ляшко, А.К. Боярчук, Я.Г. Гай. - М.: ЛКИ, 2013. - 224 c.
9. Ляшко, И.И. Справочное пособие по высшей математике.Т. 2. Математический анализ: ряды, функции векторного аргумента. Часть 1. Радя: Учебное пособие / И.И. Ляшко, А.К. Боярчук, Я.Г. Гай. - М.: ЛКИ, 2012. - 224 c.
10. Просветов, Г.И. Математический анализ: задачи и решения: Учебное пособие / Г.И. Просветов. - М.: БИНОМ. ЛЗ, 2011. - 208 c.
11. Протасов, Ю.М. Математический анализ: Учебное пособие / Ю.М. Протасов. - М.: Флинта, Наука, 2012. - 168 c.
12. Шершнев, В.Г. Математический анализ: сборник задач с решениями: Учебное пособие / В.Г. Шершнев. - М.: НИЦ ИНФРА-М, 2013. - 164 c.