Вычислительная математика. Лабораторная работа 1-3
Лабораторная работа 1
Линейная интерполяция
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Вычислительная математика Лабораторная работа 2
Приближенное решение систем линейных уравнений
Задание на лабораторную работу
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N , N– последняя цифра пароля.
Вычислительная математика Лабораторная работа 3
Численное дифференцирование
Задание на лабораторную работу
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом h на интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.