Тестовые вопросы. Методы оптимальных решений. ТИСБИ




Корзина:

Ваша корзина пуста





Главная » ТИСБИ

Тестовые вопросы. Методы оптимальных решений. ТИСБИ

Краткое содержание работы
Тестовые вопросы. Методы оптимальных решений. ТИСБИ

Задание / Часть работы

Тестовые вопросы. Методы оптимальных решений. ТИСБИ

Вопрос 1.
Непрерывная функция одной переменной на замкнутом интервале может достигать своего наибольшего и наименьшего значений
в критических точках (стационарных точках или точках, в которых производная функции не существует).
- на концах интервала.
- в любой внутренней точке интервала.
- только в тех точках интервала, где первая производная не равна нулю.

Вопрос 2.
В какой точке достигается наименьшее значение функции на отрезке [-2;1]?
в точке x=-2;
в точке x=-1;
в точке x=1.

Вопрос 3.
В методе дихотомии на каждом шаге точки выбираются
произвольно;
равноотстоящими от середины отрезка локализации;
разбивающими отрезок локализации на три равные части.

Вопрос 4.
Метод отсечения предусматривает на каждом шаге алгоритма отсечение…
отрезка, на котором заведомо нет точки минимума функции;
отрезка локализации;
отрезка, длина которого превышает величины заданной точности.

Вопрос 5.
Точки производят золотое сечение отрезка и . Тогда в задаче минимизации отрезком локализации будет…
;
;
.

Вопрос 6.
Точка производит золотое сечение отрезка , если…

Вопрос 7.
В методе Фибоначчи отрезком локализации точки минимума функции, заданной на отрезке [a,b], в случае будет отрезок
;
;

Вопрос 8.
Решая задачу минимизации функции, заданной на отрезке [-1;1], методом Фибоначчи (с ), число шагов n будет равно…
n=5;
n=6;
n=7.
(число шагов определяем из условия , F8 = 21>(1+1)/0,1=20)

Вопрос 9.
В методе минимизации функции , являющейся строго квазивыпуклой на полупрямой , отрезок локализации будет получен на k-ой итерации с шагом , где
k=10;
k=100;
k=21.

Вопрос 10.
Если функция, являющаяся строго квазивыпуклой и дифференцируемой на полупрямой , то можно ли найти ее экстремум классическим методом?
Да;
Нет.

Вопрос 11.
Если непрерывно дифференцируема на отрезке [a;b], то постоянную Липшица L (на основании теоремы Лагранжа) можно вычислить по формуле:
;
;
.

Вопрос 12.
Известно, что частные производные функции f(x) по всем переменным в точке равны нулю. Тогда точка является
точкой минимума;
точкой максимума;
стационарной точкой.

Вопрос 13.
Найденное методом множителей Лагранжа решение задачи удовлетворяет
необходимым условиям экстремума;
достаточным условиям экстремума;
необходимым и достаточным условиям экстремума.

Вопрос 14.
Найти точку минимума функции при ограничениях: , среди точек той части границы множества D, которая проходит через прямую .
(3;-2);
(3;5);
(3;4).
(в пакете Математика )

Вопрос 15.
Если на одном из этапов метода покоординатного спуска выполняется неравенство ( единичный координатный вектор), то i-ая координата новой точки будет равна…
;
;
.

Вопрос 16.
Если хотя бы один этап спуска (вдоль одной из осей) был удачным, то следующий цикл спуска осуществляется…
без изменения длины шага;
с шагом, укороченным вдвое;
с шагом, удлиненным вдвое.

Вопрос 17.
Точка y=x+te принимается за новую точку, из которой осуществляется следующий спуск, если выполняется…
;
;
.
Вопрос 18.
Градиентные методы решают задачи…
условной оптимизации;
безусловной оптимизации.

Вопрос 19.
Область допустимых значений переменных задана неравенствами : ; : . Нарушено ли какое-то из ограничений в точке с координатами .
нарушено ограничение ;
нарушены оба ограничения;
ни одно из ограничений не нарушено.

Вопрос 20.
Если в задаче условной минимизации функции ограничения имеют вид: , то в случае штрафные функции могут быть построены следующим образом:
;
Тип работы:

Рейтинг: 5.0/1
960 руб.
  • Артикул:
  • Год: 2017



Покупка готовой работы - пошаговая инструкция








Почему нам доверяют?



Все покупки на Рефератыч.рф абсолютно безопасны, автор получит деньги только в том случае если работа, была Вам полезна.



Мы гарантируем Вам низкие цены,
поэтому если Вы вдруг нашли где то работу дешевле, напишите нам и мы сделаем цену для Вас еще ниже. Гарантированно!



Самое важное для нас - Ваш успех на защите! Поэтому, если вдруг возникают какие-либо претензии к работе сразу пишите нам!




Мы работаем

c 9:00 до 19:00
суббота с 10.00 до 16.00,
воскресенье — выходной


Вопрос-ответ

Какие гарантии Вы даете?
Если у преподавателя будут какие то замечания, Вы их исправите?
Как можно оплатить работу?






Рефератыч.рф - это специализированный портал где Вы сможете найти ответы на тесты, заказать курсовую,
реферат или диплом. Почитать статьи и новости нашего портала. Надеемся что будем Вам полезны,
а наша помощь сэконмит Вам кучу времени, для действительно нужных дел! Рады будем Вам помочь!
© Рефератыч.рф



Оплатить легко:


Главная  /  О компании  /  Услуги и цены  /  Гарантии  /  Контакты  /  Экспресс-заказ  /  Оценка стоимости  /  FAQ  /  Способы оплаты  /  Политика конфиденциальности